Skip to Content
DocumentationSecurity Best Practices

Security Best Practices

NeuraScale handles sensitive neural data and medical information, requiring robust security measures. This guide covers security best practices for deployment, development, and operations.

Security Framework Overview

NeuraScale implements defense-in-depth security with multiple layers of protection:

Data Protection

End-to-end encryption and data classification

Learn more →

Access Control

Authentication, authorization, and audit logging

Learn more →

Network Security

Secure communication and network isolation

Learn more →

Compliance

HIPAA, GDPR, and SOC 2 compliance

Learn more →

Incident Response

Detection, response, and recovery procedures

Learn more →

Secure Development

Secure coding and DevSecOps practices

Learn more →

Security Architecture

Data Protection

Data Classification

NeuraScale implements a comprehensive data classification system:

ClassificationDescriptionExamplesSecurity Requirements
PublicNon-sensitive informationDocumentation, marketingStandard protection
InternalBusiness informationSystem logs, metricsAccess control required
ConfidentialSensitive business dataUser profiles, API keysEncryption + access control
RestrictedHighly sensitive dataNeural data, medical recordsFull encryption + audit + compliance

Encryption at Rest

Database Encryption Implementation

# Field-level encryption for sensitive data from cryptography.fernet import Fernet from sqlalchemy_utils import EncryptedType from sqlalchemy_utils.types.encrypted.encrypted_type import AesEngine class Patient(db.Model): id = db.Column(db.String(36), primary_key=True) # Encrypted PII fields name = db.Column(EncryptedType(db.String(255), secret_key, AesEngine, 'pkcs5')) email = db.Column(EncryptedType(db.String(255), secret_key, AesEngine, 'pkcs5')) medical_record_number = db.Column(EncryptedType(db.String(100), secret_key, AesEngine, 'pkcs5')) # Non-sensitive fields (not encrypted) created_at = db.Column(db.DateTime) study_id = db.Column(db.String(50)) # De-identified # Cloud SQL encryption configuration resource "google_sql_database_instance" "neurascale" { name = "neurascale-prod" database_version = "POSTGRES_15" region = "northamerica-northeast1" settings { tier = "db-n1-standard-4" # Encryption with customer-managed keys disk_encryption_configuration { kms_key_name = google_kms_crypto_key.sql_key.id } backup_configuration { enabled = true point_in_time_recovery_enabled = true # Backups encrypted with same key } } }

Best Practices:

  • Use separate encryption keys per environment
  • Rotate encryption keys quarterly
  • Implement key escrow for data recovery
  • Monitor key usage and access patterns

Encryption in Transit

All communication uses TLS 1.3 with perfect forward secrecy:

# TLS configuration for Cloud Load Balancer resource "google_compute_ssl_certificate" "neurascale" { name_prefix = "neurascale-ssl" private_key = file("private-key.pem") certificate = file("certificate.pem") lifecycle { create_before_destroy = true } } resource "google_compute_target_https_proxy" "neurascale" { name = "neurascale-https-proxy" url_map = google_compute_url_map.neurascale.id ssl_certificates = [google_compute_ssl_certificate.neurascale.id] # TLS 1.3 only ssl_policy = google_compute_ssl_policy.modern.id } resource "google_compute_ssl_policy" "modern" { name = "neurascale-modern-tls" profile = "MODERN" min_tls_version = "TLS_1_2" # Minimum TLS 1.2 }

Access Control

Firebase Authentication

NeuraScale uses Firebase Authentication for the console, providing secure, scalable user management with support for multiple authentication providers.

Authentication Architecture

Firebase Configuration

Client-Side Configuration

// lib/firebase/config.ts import { initializeApp, getApps } from 'firebase/app' import { getAuth, connectAuthEmulator } from 'firebase/auth' import { getAnalytics } from 'firebase/analytics' const firebaseConfig = { apiKey: process.env.NEXT_PUBLIC_FIREBASE_API_KEY, authDomain: process.env.NEXT_PUBLIC_FIREBASE_AUTH_DOMAIN, projectId: process.env.NEXT_PUBLIC_FIREBASE_PROJECT_ID, storageBucket: process.env.NEXT_PUBLIC_FIREBASE_STORAGE_BUCKET, messagingSenderId: process.env.NEXT_PUBLIC_FIREBASE_MESSAGING_SENDER_ID, appId: process.env.NEXT_PUBLIC_FIREBASE_APP_ID, measurementId: process.env.NEXT_PUBLIC_FIREBASE_MEASUREMENT_ID } // Initialize Firebase const app = getApps().length ? getApps()[0] : initializeApp(firebaseConfig) const auth = getAuth(app) // Use emulator in development if (process.env.NODE_ENV === 'development') { connectAuthEmulator(auth, 'http://localhost:9099') } // Enable analytics in production const analytics = typeof window !== 'undefined' && process.env.NODE_ENV === 'production' ? getAnalytics(app) : null export { app, auth, analytics }

Authentication Providers

Configure OAuth Providers

Google Authentication

import { GoogleAuthProvider, signInWithPopup } from 'firebase/auth' const googleProvider = new GoogleAuthProvider() googleProvider.addScope('profile') googleProvider.addScope('email') export async function signInWithGoogle() { try { const result = await signInWithPopup(auth, googleProvider) const user = result.user // Get ID token for API calls const idToken = await user.getIdToken() // Store in secure HTTP-only cookie await fetch('/api/auth/session', { method: 'POST', headers: { 'Content-Type': 'application/json' }, body: JSON.stringify({ idToken }) }) return user } catch (error) { console.error('Google sign-in failed:', error) throw error } }

Implement Email/Password Authentication

import { createUserWithEmailAndPassword, signInWithEmailAndPassword, sendEmailVerification } from 'firebase/auth' export async function signUpWithEmail(email: string, password: string) { try { // Create account const { user } = await createUserWithEmailAndPassword(auth, email, password) // Send verification email await sendEmailVerification(user) // Create user profile in database await fetch('/api/users', { method: 'POST', headers: { 'Content-Type': 'application/json', 'Authorization': `Bearer ${await user.getIdToken()}` }, body: JSON.stringify({ uid: user.uid, email: user.email, createdAt: new Date().toISOString() }) }) return user } catch (error) { if (error.code === 'auth/email-already-in-use') { throw new Error('Email already registered') } throw error } }

Add Multi-Factor Authentication

import { multiFactor, PhoneAuthProvider, PhoneMultiFactorGenerator } from 'firebase/auth' export async function enrollMFA(phoneNumber: string) { const user = auth.currentUser if (!user) throw new Error('No authenticated user') const multiFactorSession = await multiFactor(user).getSession() // Send verification code const phoneAuthCredential = PhoneAuthProvider.credential( verificationId, verificationCode ) const multiFactorAssertion = PhoneMultiFactorGenerator.assertion( phoneAuthCredential ) // Enroll MFA await multiFactor(user).enroll(multiFactorAssertion, 'Phone Number') }

Traditional Authentication (Neural Engine)

For the Neural Engine API, we use JWT tokens with the following implementation:

Multi-Factor Authentication

# MFA implementation with TOTP from pyotp import TOTP import qrcode class MFAService: def setup_mfa(self, user_id: str) -> dict: # Generate secret key secret = pyotp.random_base32() # Create TOTP object totp = TOTP(secret) # Generate QR code for authenticator app provisioning_uri = totp.provisioning_uri( name=user.email, issuer_name="NeuraScale" ) qr = qrcode.QRCode() qr.add_data(provisioning_uri) qr.make(fit=True) # Store secret (encrypted) user.mfa_secret = self.encrypt_secret(secret) user.mfa_enabled = True db.session.commit() return { "secret": secret, "qr_code": qr.make_image(), "backup_codes": self.generate_backup_codes(user_id) } def verify_mfa(self, user_id: str, token: str) -> bool: user = User.query.get(user_id) if not user.mfa_enabled: return True secret = self.decrypt_secret(user.mfa_secret) totp = TOTP(secret) # Allow 30-second window return totp.verify(token, valid_window=1) def generate_backup_codes(self, user_id: str) -> list: """Generate single-use backup codes""" codes = [secrets.token_hex(4) for _ in range(10)] # Store hashed backup codes for code in codes: backup_code = BackupCode( user_id=user_id, code_hash=bcrypt.hashpw(code.encode(), bcrypt.gensalt()), used=False ) db.session.add(backup_code) db.session.commit() return codes

JWT Token Management

# Secure JWT implementation import jwt from datetime import datetime, timedelta from cryptography.hazmat.primitives import serialization class JWTService: def __init__(self, private_key_path: str, public_key_path: str): # Load RSA keys with open(private_key_path, 'rb') as f: self.private_key = serialization.load_pem_private_key( f.read(), password=None ) with open(public_key_path, 'rb') as f: self.public_key = serialization.load_pem_public_key(f.read()) def generate_tokens(self, user: User) -> dict: now = datetime.utcnow() # Access token (short-lived) access_payload = { 'sub': str(user.id), 'email': user.email, 'role': user.role, 'permissions': user.get_permissions(), 'iat': now, 'exp': now + timedelta(hours=1), 'iss': 'neurascale.io', 'aud': 'neurascale-api', 'jti': str(uuid.uuid4()), # Unique token ID 'type': 'access' } # Refresh token (long-lived) refresh_payload = { 'sub': str(user.id), 'iat': now, 'exp': now + timedelta(days=30), 'iss': 'neurascale.io', 'aud': 'neurascale-api', 'jti': str(uuid.uuid4()), 'type': 'refresh' } access_token = jwt.encode( access_payload, self.private_key, algorithm='RS256' ) refresh_token = jwt.encode( refresh_payload, self.private_key, algorithm='RS256' ) # Store refresh token in database self.store_refresh_token(user.id, refresh_payload['jti']) return { 'access_token': access_token, 'refresh_token': refresh_token, 'expires_in': 3600, 'token_type': 'Bearer' } def verify_token(self, token: str) -> dict: try: payload = jwt.decode( token, self.public_key, algorithms=['RS256'], audience='neurascale-api', issuer='neurascale.io' ) # Check if token is blacklisted if self.is_token_blacklisted(payload['jti']): raise jwt.InvalidTokenError("Token has been revoked") return payload except jwt.ExpiredSignatureError: raise jwt.InvalidTokenError("Token has expired") except jwt.InvalidTokenError as e: raise jwt.InvalidTokenError(f"Invalid token: {str(e)}")

Role-Based Access Control

# RBAC implementation from enum import Enum from functools import wraps class Role(Enum): ADMIN = "admin" CLINICIAN = "clinician" RESEARCHER = "researcher" TECHNICIAN = "technician" PATIENT = "patient" class Permission(Enum): # Device permissions DEVICE_READ = "device:read" DEVICE_WRITE = "device:write" DEVICE_STREAM = "device:stream" # Session permissions SESSION_CREATE = "session:create" SESSION_READ = "session:read" SESSION_UPDATE = "session:update" SESSION_DELETE = "session:delete" # Data permissions DATA_READ = "data:read" DATA_EXPORT = "data:export" DATA_ANALYZE = "data:analyze" # Admin permissions USER_MANAGE = "user:manage" SYSTEM_CONFIG = "system:config" AUDIT_VIEW = "audit:view" # Role-permission mapping ROLE_PERMISSIONS = { Role.ADMIN: [p for p in Permission], # All permissions Role.CLINICIAN: [ Permission.DEVICE_READ, Permission.DEVICE_STREAM, Permission.SESSION_CREATE, Permission.SESSION_READ, Permission.SESSION_UPDATE, Permission.DATA_READ, Permission.DATA_ANALYZE, ], Role.RESEARCHER: [ Permission.SESSION_READ, Permission.DATA_READ, Permission.DATA_EXPORT, Permission.DATA_ANALYZE, ], Role.TECHNICIAN: [ Permission.DEVICE_READ, Permission.DEVICE_WRITE, Permission.SESSION_READ, ], Role.PATIENT: [ Permission.SESSION_READ, # Own sessions only Permission.DATA_READ, # Own data only ], } def require_permission(permission: Permission): """Decorator to enforce permission-based access control""" def decorator(f): @wraps(f) def decorated_function(*args, **kwargs): # Get current user from JWT token current_user = get_current_user() if not current_user: abort(401, "Authentication required") # Check if user has required permission user_permissions = ROLE_PERMISSIONS.get(current_user.role, []) if permission not in user_permissions: audit_log.log_access_denied( user_id=current_user.id, resource=f.__name__, permission=permission.value, ip_address=request.remote_addr ) abort(403, f"Permission denied: {permission.value}") # Log successful access audit_log.log_access_granted( user_id=current_user.id, resource=f.__name__, permission=permission.value, ip_address=request.remote_addr ) return f(*args, **kwargs) return decorated_function return decorator # Usage example @app.route('/api/v1/devices/<device_id>/stream/start', methods=['POST']) @require_permission(Permission.DEVICE_STREAM) def start_device_stream(device_id): # Implementation here pass

Authorization Policies

# Resource-based authorization class ResourcePolicy: def __init__(self, user: User): self.user = user def can_access_session(self, session: Session) -> bool: """Check if user can access specific session""" # Admin can access all sessions if self.user.role == Role.ADMIN: return True # Clinician can access sessions they created or are assigned to if self.user.role == Role.CLINICIAN: return (session.created_by == self.user.id or self.user.id in session.assigned_clinicians) # Researcher can access sessions in their studies if self.user.role == Role.RESEARCHER: return session.study_id in self.user.authorized_studies # Patient can only access their own sessions if self.user.role == Role.PATIENT: return session.patient_id == self.user.patient_profile.id return False def can_export_data(self, session: Session) -> bool: """Check if user can export session data""" # Must have basic session access first if not self.can_access_session(session): return False # Additional restrictions for data export if self.user.role == Role.PATIENT: return False # Patients cannot export raw data # Check data use agreement if not self.user.has_signed_data_use_agreement(): return False return True def get_data_access_level(self, session: Session) -> str: """Determine level of data access for session""" if not self.can_access_session(session): return "none" if self.user.role in [Role.ADMIN, Role.CLINICIAN]: return "full" # Access to raw data and PII if self.user.role == Role.RESEARCHER: return "de_identified" # De-identified data only if self.user.role == Role.PATIENT: return "summary" # High-level summaries only return "none"

Network Security

VPC Configuration

# Secure VPC setup resource "google_compute_network" "neurascale_vpc" { name = "neurascale-vpc" auto_create_subnetworks = false } # Private subnet for application servers resource "google_compute_subnetwork" "private_subnet" { name = "neurascale-private" ip_cidr_range = "10.0.1.0/24" region = "northamerica-northeast1" network = google_compute_network.neurascale_vpc.id # Enable private Google access private_ip_google_access = true # Secondary range for pods and services secondary_ip_range { range_name = "pods" ip_cidr_range = "10.1.0.0/16" } secondary_ip_range { range_name = "services" ip_cidr_range = "10.2.0.0/16" } } # Firewall rules resource "google_compute_firewall" "allow_internal" { name = "neurascale-allow-internal" network = google_compute_network.neurascale_vpc.name allow { protocol = "tcp" ports = ["0-65535"] } source_ranges = ["10.0.0.0/8"] } resource "google_compute_firewall" "allow_https" { name = "neurascale-allow-https" network = google_compute_network.neurascale_vpc.name allow { protocol = "tcp" ports = ["443"] } source_ranges = ["0.0.0.0/0"] target_tags = ["https-server"] } # Deny all other inbound traffic resource "google_compute_firewall" "deny_all" { name = "neurascale-deny-all" network = google_compute_network.neurascale_vpc.name deny { protocol = "all" } source_ranges = ["0.0.0.0/0"] priority = 1000 }

Cloud Armor Security

# DDoS protection and Web Application Firewall resource "google_compute_security_policy" "neurascale_policy" { name = "neurascale-security-policy" # Rate limiting rule rule { action = "throttle" priority = "1000" match { versioned_expr = "SRC_IPS_V1" config { src_ip_ranges = ["*"] } } rate_limit_options { conform_action = "allow" exceed_action = "deny(429)" rate_limit_threshold { count = 100 interval_sec = 60 } } } # Block known bad IPs rule { action = "deny(403)" priority = "2000" match { versioned_expr = "SRC_IPS_V1" config { src_ip_ranges = [ "192.0.2.0/24", # Example bad IP range ] } } } # OWASP ModSecurity Core Rule Set rule { action = "deny(403)" priority = "3000" match { expr { expression = "evaluatePreconfiguredExpr('xss-stable')" } } } rule { action = "deny(403)" priority = "3001" match { expr { expression = "evaluatePreconfiguredExpr('sqli-stable')" } } } # Default allow rule rule { action = "allow" priority = "2147483647" match { versioned_expr = "SRC_IPS_V1" config { src_ip_ranges = ["*"] } } } }

Compliance

HIPAA and SOC 2 Type II Requirements

Why Both HIPAA and SOC 2? While HIPAA compliance is mandatory for handling Protected Health Information (PHI), SOC 2 Type II certification provides additional assurance about our security controls, operational processes, and data handling practices. Most healthcare organizations require both certifications as they complement each other:

  • HIPAA focuses specifically on protecting patient health information
  • SOC 2 Type II validates our overall security posture, availability, processing integrity, confidentiality, and privacy controls

Together, they demonstrate a comprehensive approach to security and compliance that meets healthcare industry standards.

SOC 2 Type II Certification

NeuraScale maintains SOC 2 Type II certification covering all five trust service criteria:

Security Controls

  • Firewall and intrusion detection systems
  • Multi-factor authentication enforcement
  • Regular vulnerability assessments
  • Security awareness training
  • Incident response procedures
  • Change management controls

HIPAA Compliance

NeuraScale implements comprehensive HIPAA safeguards:

Administrative Safeguards

RequirementImplementationEvidence
Security OfficerDedicated CISO and security teamOrg chart, responsibilities
Workforce TrainingAnnual security training programTraining records, certificates
Access ManagementRole-based access controlUser access logs, reviews
Incident Response24/7 security operations centerIncident response plan, logs
Business AssociateHIPAA agreements with vendorsSigned BAAs on file
Risk AssessmentAnnual security risk assessmentsRisk assessment reports
# HIPAA audit logging class HIPAAAuditLogger: def __init__(self): self.logger = logging.getLogger('hipaa_audit') self.logger.setLevel(logging.INFO) # Send to Cloud Logging with long retention handler = google.cloud.logging.handlers.CloudLoggingHandler( client=google.cloud.logging.Client(), name='hipaa-audit-log' ) self.logger.addHandler(handler) def log_phi_access(self, user_id: str, patient_id: str, action: str, resource: str): """Log access to Protected Health Information""" audit_event = { 'event_type': 'PHI_ACCESS', 'timestamp': datetime.utcnow().isoformat(), 'user_id': user_id, 'patient_id': patient_id, 'action': action, 'resource': resource, 'ip_address': request.remote_addr, 'user_agent': request.headers.get('User-Agent'), 'session_id': session.get('session_id'), 'compliance_framework': 'HIPAA' } self.logger.info('PHI Access Event', extra=audit_event) def log_data_export(self, user_id: str, export_details: dict): """Log data export events""" audit_event = { 'event_type': 'DATA_EXPORT', 'timestamp': datetime.utcnow().isoformat(), 'user_id': user_id, 'export_format': export_details.get('format'), 'record_count': export_details.get('record_count'), 'date_range': export_details.get('date_range'), 'purpose': export_details.get('purpose'), 'retention_schedule': export_details.get('retention') } self.logger.info('Data Export Event', extra=audit_event)

Integrated Compliance Approach

Important: Healthcare organizations typically require both HIPAA compliance and SOC 2 Type II certification. Here’s how NeuraScale integrates both frameworks:

Compliance Synergies

RequirementHIPAA ImplementationSOC 2 ControlBenefit
Access ControlMinimum necessary standardCC6.1 - Logical access controlsUnified IAM system
Encryption§164.312(a)(2)(iv) - PHI encryptionCC6.7 - Data transmission controlsSingle encryption framework
Audit Logging§164.312(b) - Activity logsCC7.2 - System monitoringConsolidated audit trail
Risk Assessment§164.308(a)(1) - Risk analysisCC3.2 - Risk assessment processIntegrated risk management
Incident Response§164.308(a)(6) - Response proceduresCC7.3 - Incident managementUnified incident handling
Business Continuity§164.308(a)(7) - Contingency planA1.2 - Availability commitmentsSingle DR/BC strategy
Vendor ManagementBusiness Associate AgreementsCC9.2 - Vendor risk managementConsolidated vendor controls
Training§164.308(a)(5) - Security trainingCC1.4 - Security awarenessCombined training program

Audit and Reporting

class ComplianceReporting: """Unified compliance reporting for HIPAA and SOC 2""" def generate_compliance_report(self, report_type: str, period: str): report = { 'generated_at': datetime.utcnow(), 'period': period, 'type': report_type } if report_type == 'HIPAA_AUDIT': report['sections'] = [ self.generate_phi_access_report(), self.generate_breach_assessment(), self.generate_baa_status(), self.generate_risk_analysis() ] elif report_type == 'SOC2_ATTESTATION': report['sections'] = [ self.generate_control_effectiveness(), self.generate_exception_report(), self.generate_change_management(), self.generate_availability_metrics() ] elif report_type == 'INTEGRATED_COMPLIANCE': # Combined report for healthcare clients report['sections'] = [ self.generate_unified_controls(), self.generate_combined_risks(), self.generate_compliance_metrics(), self.generate_attestation_summary() ] return report def generate_unified_controls(self): """Show how controls satisfy both frameworks""" controls = [] # Example: Access control satisfies both controls.append({ 'control_id': 'AC-001', 'description': 'Role-based access control with MFA', 'hipaa_requirements': ['§164.308(a)(4)', '§164.312(a)(1)'], 'soc2_criteria': ['CC6.1', 'CC6.2', 'CC6.3'], 'effectiveness': 'Operating effectively', 'last_tested': '2024-01-15', 'evidence': ['access_logs', 'user_reviews', 'mfa_reports'] }) return controls

Key Benefits of Dual Compliance

  1. Enhanced Trust: Healthcare organizations see both certifications as table stakes
  2. Reduced Audit Burden: Many controls overlap, reducing duplicate work
  3. Comprehensive Coverage: HIPAA focuses on PHI, SOC 2 covers broader security
  4. Continuous Monitoring: SOC 2 requires ongoing control effectiveness
  5. Third-Party Validation: Independent auditors verify both frameworks

Data Retention and Disposal

# Automated data lifecycle management class DataLifecycleManager: def __init__(self): self.retention_policies = { 'clinical_data': timedelta(days=2555), # 7 years for HIPAA 'research_data': timedelta(days=3653), # 10 years for research 'audit_logs': timedelta(days=2555), # 7 years for compliance 'system_logs': timedelta(days=90), # 90 days for operations 'backup_data': timedelta(days=2555), # 7 years for recovery } def apply_retention_policy(self): """Apply retention policies across all data types""" for data_type, retention_period in self.retention_policies.items(): cutoff_date = datetime.utcnow() - retention_period if data_type == 'clinical_data': self.archive_clinical_data(cutoff_date) elif data_type == 'audit_logs': self.archive_audit_logs(cutoff_date) # ... handle other data types def secure_delete(self, file_path: str): """Securely delete files using DoD 5220.22-M standard""" # Three-pass overwrite with open(file_path, 'r+b') as f: file_size = f.seek(0, 2) f.seek(0) # Pass 1: Write random data f.write(os.urandom(file_size)) f.flush() os.fsync(f.fileno()) # Pass 2: Write complement f.seek(0) f.write(bytes([0xFF] * file_size)) f.flush() os.fsync(f.fileno()) # Pass 3: Write zeros f.seek(0) f.write(bytes([0x00] * file_size)) f.flush() os.fsync(f.fileno()) # Remove file os.remove(file_path) # Log destruction audit_log.log_data_destruction( file_path=file_path, destruction_method="DoD_5220.22-M", timestamp=datetime.utcnow() )

Incident Response

Detection and Monitoring

# Security monitoring and alerting class SecurityMonitor: def __init__(self): self.alert_thresholds = { 'failed_logins': 5, 'suspicious_api_calls': 100, 'data_export_volume': 1000, # MB 'unusual_access_patterns': 10 } def monitor_failed_logins(self): """Monitor for brute force attacks""" # Query recent failed logins recent_failures = db.session.query(AuditLog).filter( AuditLog.event_type == 'LOGIN_FAILED', AuditLog.timestamp > datetime.utcnow() - timedelta(minutes=15) ).all() # Group by IP address failures_by_ip = {} for failure in recent_failures: ip = failure.ip_address failures_by_ip[ip] = failures_by_ip.get(ip, 0) + 1 # Alert on threshold breach for ip, count in failures_by_ip.items(): if count >= self.alert_thresholds['failed_logins']: self.send_security_alert( alert_type='BRUTE_FORCE_DETECTED', details={ 'ip_address': ip, 'failed_attempts': count, 'time_window': '15 minutes' }, severity='HIGH' ) # Temporarily block IP self.block_ip_address(ip, duration_minutes=60) def detect_anomalous_access(self, user_id: str): """Detect unusual access patterns""" # Get user's typical access patterns user_profile = self.get_user_access_profile(user_id) # Current session analysis current_session = self.get_current_session(user_id) anomalies = [] # Check for unusual times if self.is_unusual_time(current_session.login_time, user_profile): anomalies.append('unusual_time') # Check for unusual location if self.is_unusual_location(current_session.ip_address, user_profile): anomalies.append('unusual_location') # Check for unusual data access volume if self.is_unusual_data_access(current_session, user_profile): anomalies.append('unusual_data_volume') if len(anomalies) >= 2: # Multiple anomalies = high risk self.send_security_alert( alert_type='ANOMALOUS_ACCESS_DETECTED', details={ 'user_id': user_id, 'anomalies': anomalies, 'session_id': current_session.id }, severity='MEDIUM' ) # Require additional authentication self.require_step_up_auth(user_id) def send_security_alert(self, alert_type: str, details: dict, severity: str): """Send security alerts to SOC team""" alert = { 'timestamp': datetime.utcnow().isoformat(), 'alert_type': alert_type, 'severity': severity, 'details': details, 'source': 'neurascale-security-monitor' } # Send to Slack/PagerDuty if severity in ['HIGH', 'CRITICAL']: self.send_pagerduty_alert(alert) else: self.send_slack_alert(alert) # Log to security incident system self.log_security_incident(alert)

Incident Response Playbook

Immediate Actions (0-15 minutes)

  1. Identify and Contain

    # Isolate affected systems kubectl scale deployment neural-engine --replicas=0 # Block suspicious IP addresses gcloud compute firewall-rules create block-suspicious-ip \ --direction=INGRESS \ --action=DENY \ --source-ranges=<SUSPICIOUS_IP>
  2. Preserve Evidence

    # Capture logs gcloud logging read "severity>=WARNING" \ --format="value(textPayload)" > incident-logs.txt # Create disk snapshots gcloud compute disks snapshot <DISK_NAME> \ --snapshot-names=incident-evidence-$(date +%Y%m%d-%H%M)
  3. Notify Stakeholders

    • Security team (immediate)
    • Legal/Compliance (within 1 hour)
    • Affected customers (as required)
    • Regulatory bodies (if PHI involved)

Secure Development

Secure Coding Practices

# Input validation and sanitization from marshmallow import Schema, fields, validate, ValidationError import bleach class NeuralDataSchema(Schema): device_id = fields.Str( required=True, validate=validate.Regexp(r'^[a-zA-Z0-9_-]+$'), error_messages={'invalid': 'Device ID contains invalid characters'} ) sample_rate = fields.Int( required=True, validate=validate.Range(min=1, max=10000), error_messages={'invalid': 'Sample rate must be between 1 and 10000 Hz'} ) channels = fields.List( fields.Int(validate=validate.Range(min=1, max=256)), validate=validate.Length(min=1, max=64), required=True ) metadata = fields.Dict( keys=fields.Str(validate=validate.Length(max=50)), values=fields.Str(validate=validate.Length(max=500)) ) def validate_and_sanitize_input(data: dict) -> dict: """Validate and sanitize all user inputs""" schema = NeuralDataSchema() try: # Validate structure and types validated_data = schema.load(data) # Sanitize string fields if 'metadata' in validated_data: for key, value in validated_data['metadata'].items(): validated_data['metadata'][key] = bleach.clean( value, tags=[], # No HTML tags allowed strip=True ) return validated_data except ValidationError as err: raise ValueError(f"Input validation failed: {err.messages}") # SQL injection prevention def get_user_sessions(user_id: str, start_date: datetime, end_date: datetime): """Safe database query using parameterized statements""" # Input validation if not isinstance(user_id, str) or not user_id.strip(): raise ValueError("Invalid user_id") if start_date >= end_date: raise ValueError("start_date must be before end_date") # Parameterized query (prevents SQL injection) query = """ SELECT id, name, start_time, end_time, status FROM sessions WHERE user_id = %s AND start_time >= %s AND start_time <= %s ORDER BY start_time DESC LIMIT 100 """ return db.session.execute( text(query), (user_id, start_date, end_date) ).fetchall() # XSS prevention def render_user_content(content: str) -> str: """Safely render user-generated content""" # Whitelist allowed HTML tags and attributes allowed_tags = ['p', 'br', 'strong', 'em', 'ul', 'ol', 'li'] allowed_attributes = {} cleaned_content = bleach.clean( content, tags=allowed_tags, attributes=allowed_attributes, strip=True ) return cleaned_content

Security Testing

# Security testing framework import pytest import requests from selenium import webdriver from zap import ZAPv2 class SecurityTestSuite: def __init__(self): self.base_url = "https://staging-api.neurascale.io" self.zap = ZAPv2() def test_authentication_bypass(self): """Test for authentication bypass vulnerabilities""" protected_endpoints = [ '/api/v1/devices', '/api/v1/sessions', '/api/v1/users/profile' ] for endpoint in protected_endpoints: # Test without token response = requests.get(f"{self.base_url}{endpoint}") assert response.status_code == 401, f"Endpoint {endpoint} not properly protected" # Test with invalid token headers = {'Authorization': 'Bearer invalid_token'} response = requests.get(f"{self.base_url}{endpoint}", headers=headers) assert response.status_code == 401, f"Endpoint {endpoint} accepts invalid tokens" def test_sql_injection(self): """Test for SQL injection vulnerabilities""" # Common SQL injection payloads payloads = [ "'; DROP TABLE users; --", "' OR '1'='1", "' UNION SELECT * FROM users --", "admin'/*", "'; EXEC xp_cmdshell('dir'); --" ] for payload in payloads: # Test in various parameters test_data = { 'device_id': payload, 'user_id': payload, 'session_name': payload } response = requests.post( f"{self.base_url}/api/v1/sessions", json=test_data, headers={'Authorization': 'Bearer valid_test_token'} ) # Should return 400 (validation error) not 500 (database error) assert response.status_code != 500, f"Potential SQL injection with payload: {payload}" def test_xss_prevention(self): """Test for XSS vulnerabilities""" xss_payloads = [ "<script>alert('XSS')</script>", "<img src=x onerror=alert('XSS')>", "javascript:alert('XSS')", "<svg onload=alert('XSS')>", "';alert('XSS');//" ] for payload in xss_payloads: # Test in session metadata test_data = { 'name': f"Test Session {payload}", 'description': f"Description with {payload}", 'metadata': {'notes': payload} } response = requests.post( f"{self.base_url}/api/v1/sessions", json=test_data, headers={'Authorization': 'Bearer valid_test_token'} ) if response.status_code == 201: # Verify payload was sanitized session_data = response.json() assert payload not in str(session_data), f"XSS payload not sanitized: {payload}" def test_rate_limiting(self): """Test rate limiting implementation""" # Rapid requests to test rate limiting responses = [] for i in range(150): # Exceed 100 req/min limit response = requests.get(f"{self.base_url}/api/v1/status") responses.append(response.status_code) # Should see 429 (Too Many Requests) responses assert 429 in responses, "Rate limiting not properly implemented" def run_zap_security_scan(self): """Run OWASP ZAP security scan""" # Start ZAP daemon self.zap.core.new_session() # Spider the application self.zap.spider.scan(self.base_url) # Wait for spider to complete while int(self.zap.spider.status()) < 100: time.sleep(1) # Active security scan self.zap.ascan.scan(self.base_url) # Wait for scan to complete while int(self.zap.ascan.status()) < 100: time.sleep(5) # Get results alerts = self.zap.core.alerts() # Filter high-risk issues high_risk_alerts = [ alert for alert in alerts if alert['risk'] in ['High', 'Critical'] ] assert len(high_risk_alerts) == 0, f"High-risk security issues found: {high_risk_alerts}"

Security Monitoring

Real-time Alerting

# Cloud Monitoring alerting policies resource "google_monitoring_alert_policy" "failed_login_attempts" { display_name = "High Failed Login Attempts" combiner = "OR" conditions { display_name = "Failed login rate" condition_threshold { filter = "resource.type=\"cloud_run_revision\" AND jsonPayload.event_type=\"LOGIN_FAILED\"" duration = "300s" comparison = "COMPARISON_GT" threshold_value = 10 aggregations { alignment_period = "60s" per_series_aligner = "ALIGN_RATE" } } } notification_channels = [ google_monitoring_notification_channel.pagerduty.name ] alert_strategy { auto_close = "1800s" } } resource "google_monitoring_alert_policy" "data_exfiltration" { display_name = "Unusual Data Export Volume" combiner = "OR" conditions { display_name = "High data export rate" condition_threshold { filter = "resource.type=\"cloud_run_revision\" AND jsonPayload.event_type=\"DATA_EXPORT\"" duration = "900s" comparison = "COMPARISON_GT" threshold_value = 1000000000 # 1GB aggregations { alignment_period = "300s" per_series_aligner = "ALIGN_SUM" } } } notification_channels = [ google_monitoring_notification_channel.security_team.name ] }

For more security guidance, see our Security Architecture documentation and Compliance Checklist.

Next Steps

  1. Review Security Policies: Familiarize yourself with our security policies and procedures
  2. Complete Security Training: All team members must complete annual security training
  3. Configure Development Environment: Follow secure development setup guide
  4. Implement Security Controls: Apply security controls appropriate for your role
  5. Regular Security Reviews: Participate in quarterly security reviews

Remember: Security is everyone’s responsibility. When in doubt, ask the security team for guidance.

For security incidents or questions: security@neurascale.io

Last updated on