Skip to Content
DocumentationMonitoring & Observability

Monitoring & Observability

Comprehensive monitoring and observability for NeuraScale across all environments.

Overview

NeuraScale implements a multi-layered observability strategy:

  • Application Monitoring: Performance metrics, error tracking, and distributed tracing 🔧 Beta
  • Infrastructure Monitoring: GCP resource usage, Kubernetes health, and system metrics 🚀 Coming Soon
  • Business Monitoring: User activity, neural session analytics, and compliance auditing 📅 Planned
  • Security Monitoring: Access logs, threat detection, and compliance events 🚀 Coming Soon

Monitoring Platform Status

ComponentStatusDetails
Prometheus Metrics✓ AvailableDeployed via Helm, collecting service metrics
Application Logging✓ AvailableStructured JSON logging with correlation IDs
Grafana Dashboards🔧 BetaBasic dashboards, custom ones in development
GCP Monitoring🚀 Coming SoonCloud deployment metrics pending
Distributed Tracing📅 PlannedOpenTelemetry implementation planned
Alerting📅 PlannedPagerDuty integration planned

Stack Components

Stack Components

  • Google Cloud Monitoring: Infrastructure metrics, logs, and alerts 🚀 Coming Soon
  • Prometheus + Grafana: Application metrics and custom dashboards ✓ Available
  • OpenTelemetry: Distributed tracing and instrumentation 📅 Planned
  • Sentry: Error tracking and performance monitoring 📅 Planned

Prometheus Deployment

Prometheus is actively deployed in our Neural Engine infrastructure via Helm charts and is collecting metrics from all services.

Prometheus Configuration

NeuraScale uses Prometheus for metrics collection from all Neural Engine services. The deployment is managed through Helm charts in the neural-engine/helm directory.

Service Endpoints

All Neural Engine services expose metrics endpoints:

  • API Gateway: Port 9092 at /metrics
  • Device Manager: Port 9091 at /metrics
  • Signal Processor: Port 8080 at /metrics
  • ML Pipeline: Port 9093 at /metrics
  • MCP Server: Port 9094 at /metrics

Metrics Collected

  • HTTP request rates and latencies
  • Processing queue depths
  • Device connection status
  • Signal quality metrics
  • Resource utilization (CPU, memory, GPU)
  • Error rates and types

Grafana Dashboards

Basic dashboards are available for:

  • Service health overview
  • API performance metrics
  • Neural processing pipeline status
  • Resource utilization trends

Application Monitoring

Metrics Collection

# neural-engine/src/monitoring/api_metrics.py from prometheus_client import Counter, Histogram, Gauge, generate_latest from fastapi import FastAPI, Request, Response from fastapi.responses import PlainTextResponse import time from typing import Callable # Define metrics http_requests_total = Counter( 'http_requests_total', 'Total HTTP requests', ['method', 'endpoint', 'status'] ) http_request_duration = Histogram( 'http_request_duration_seconds', 'HTTP request duration in seconds', ['method', 'endpoint'] ) active_requests = Gauge( 'http_requests_active', 'Active HTTP requests' ) class PrometheusMiddleware: """Middleware to collect Prometheus metrics""" def __init__(self, app: FastAPI): self.app = app async def __call__(self, request: Request, call_next: Callable): # Track active requests active_requests.inc() # Record start time start_time = time.time() # Process request response = await call_next(request) # Calculate duration duration = time.time() - start_time # Record metrics http_requests_total.labels( method=request.method, endpoint=request.url.path, status=response.status_code ).inc() http_request_duration.labels( method=request.method, endpoint=request.url.path ).observe(duration) # Decrement active requests active_requests.dec() return response # Add metrics endpoint @app.get("/metrics", response_class=PlainTextResponse) async def metrics(): """Prometheus metrics endpoint""" return generate_latest() # Health check with detailed status @app.get("/health") async def health_check(): """Comprehensive health check""" health_status = { "status": "healthy", "timestamp": datetime.utcnow().isoformat(), "checks": { "database": await check_database_health(), "cache": await check_cache_health(), "gpu": check_gpu_health(), "disk_space": check_disk_space() } } # Determine overall health if any(not check["healthy"] for check in health_status["checks"].values()): health_status["status"] = "unhealthy" return Response(content=json.dumps(health_status), status_code=503) return health_status

Distributed Tracing

# neural-engine/src/monitoring/tracing.py from opentelemetry import trace from opentelemetry.exporter.cloud_trace import CloudTraceSpanExporter from opentelemetry.instrumentation.fastapi import FastAPIInstrumentor from opentelemetry.instrumentation.sqlalchemy import SQLAlchemyInstrumentor from opentelemetry.instrumentation.requests import RequestsInstrumentor from opentelemetry.sdk.trace import TracerProvider from opentelemetry.sdk.trace.export import BatchSpanProcessor from opentelemetry.sdk.resources import Resource def setup_tracing(app: FastAPI, service_name: str): """Configure OpenTelemetry tracing""" # Create resource resource = Resource.create({ "service.name": service_name, "service.version": get_version(), "deployment.environment": os.getenv("ENVIRONMENT", "development") }) # Setup tracer provider tracer_provider = TracerProvider(resource=resource) trace.set_tracer_provider(tracer_provider) # Configure Cloud Trace exporter cloud_trace_exporter = CloudTraceSpanExporter() span_processor = BatchSpanProcessor(cloud_trace_exporter) tracer_provider.add_span_processor(span_processor) # Instrument libraries FastAPIInstrumentor.instrument_app(app) SQLAlchemyInstrumentor().instrument() RequestsInstrumentor().instrument() return trace.get_tracer(service_name) # Usage in application tracer = setup_tracing(app, "neural-engine") @app.post("/api/v1/process") async def process_signal(request: SignalRequest): """Process neural signal with tracing""" with tracer.start_as_current_span("process_signal") as span: # Add span attributes span.set_attribute("signal.type", request.signal_type) span.set_attribute("signal.channels", len(request.channels)) span.set_attribute("signal.sampling_rate", request.sampling_rate) # Preprocessing span with tracer.start_as_current_span("preprocess"): preprocessed = await preprocess_signal(request.data) # Feature extraction span with tracer.start_as_current_span("extract_features"): features = await extract_features(preprocessed) span.set_attribute("features.count", len(features)) # Model inference span with tracer.start_as_current_span("model_inference") as inference_span: inference_span.set_attribute("model.name", "neural_classifier_v2") result = await run_inference(features) return result

Error Tracking

# neural-engine/src/monitoring/error_tracking.py import sentry_sdk from sentry_sdk.integrations.fastapi import FastApiIntegration from sentry_sdk.integrations.sqlalchemy import SqlalchemyIntegration from sentry_sdk.integrations.logging import LoggingIntegration def setup_sentry(dsn: str, environment: str): """Configure Sentry error tracking""" sentry_sdk.init( dsn=dsn, environment=environment, integrations=[ FastApiIntegration( transaction_style="endpoint", failed_request_status_codes={400, 403, 404, 405, 500, 503} ), SqlalchemyIntegration(), LoggingIntegration( level=logging.INFO, event_level=logging.ERROR ) ], traces_sample_rate=0.1, # 10% of transactions profiles_sample_rate=0.1, # 10% profiling attach_stacktrace=True, send_default_pii=False, # HIPAA compliance before_send=sanitize_event # Remove PHI ) def sanitize_event(event, hint): """Remove any PHI from Sentry events""" # Remove sensitive fields sensitive_fields = ['patient_id', 'session_id', 'email', 'name'] if 'extra' in event: for field in sensitive_fields: event['extra'].pop(field, None) if 'user' in event: event['user'] = {'id': event['user'].get('id')} return event # Custom error handling @app.exception_handler(NeuralProcessingError) async def neural_processing_error_handler(request: Request, exc: NeuralProcessingError): """Handle neural processing errors with detailed tracking""" # Log to Sentry with context with sentry_sdk.push_scope() as scope: scope.set_tag("error.type", "neural_processing") scope.set_context("processing", { "stage": exc.stage, "signal_type": exc.signal_type, "duration": exc.processing_duration }) sentry_sdk.capture_exception(exc) # Return sanitized error response return JSONResponse( status_code=500, content={ "error": "Processing failed", "error_id": sentry_sdk.last_event_id(), "stage": exc.stage } )

Infrastructure Monitoring

Google Cloud Monitoring

# neural-engine/monitoring/alerting-policies.yaml apiVersion: monitoring.googleapis.com/v3 kind: AlertPolicy metadata: name: neural-engine-high-latency spec: displayName: "Neural Engine High Latency" conditions: - displayName: "API latency > 100ms" conditionThreshold: filter: | resource.type = "k8s_container" resource.labels.container_name = "neural-engine" metric.type = "kubernetes.io/container/request_latency" aggregations: - alignmentPeriod: 60s perSeriesAligner: ALIGN_PERCENTILE_95 comparison: COMPARISON_GT thresholdValue: 0.1 duration: 300s notificationChannels: - projects/neurascale/notificationChannels/12345 # PagerDuty - projects/neurascale/notificationChannels/67890 # Slack alertStrategy: autoClose: 86400s # 24 hours --- apiVersion: monitoring.googleapis.com/v3 kind: AlertPolicy metadata: name: neural-engine-error-rate spec: displayName: "Neural Engine Error Rate" conditions: - displayName: "Error rate > 1%" conditionThreshold: filter: | resource.type = "cloud_run_revision" metric.type = "run.googleapis.com/request_count" metric.labels.response_code_class != "2xx" aggregations: - alignmentPeriod: 300s perSeriesAligner: ALIGN_RATE crossSeriesReducer: REDUCE_SUM comparison: COMPARISON_GT thresholdValue: 0.01 duration: 600s

Custom Dashboards

# neural-engine/monitoring/dashboard_generator.py from google.cloud import monitoring_dashboard_v1 import json def create_neural_dashboard(project_id: str): """Create custom monitoring dashboard""" client = monitoring_dashboard_v1.DashboardsServiceClient() dashboard_config = { "displayName": "Neural Engine Performance", "mosaicLayout": { "columns": 12, "tiles": [ { "width": 6, "height": 4, "widget": { "title": "Request Rate", "xyChart": { "dataSets": [{ "timeSeriesQuery": { "timeSeriesFilter": { "filter": 'metric.type="custom.googleapis.com/neural/http_requests_total"', "aggregation": { "alignmentPeriod": "60s", "perSeriesAligner": "ALIGN_RATE" } } } }] } } }, { "xPos": 6, "width": 6, "height": 4, "widget": { "title": "Processing Latency (p95)", "xyChart": { "dataSets": [{ "timeSeriesQuery": { "timeSeriesFilter": { "filter": 'metric.type="custom.googleapis.com/neural/processing_latency"', "aggregation": { "alignmentPeriod": "60s", "perSeriesAligner": "ALIGN_PERCENTILE_95" } } } }] } } }, { "yPos": 4, "width": 12, "height": 4, "widget": { "title": "GPU Utilization", "xyChart": { "dataSets": [{ "timeSeriesQuery": { "timeSeriesFilter": { "filter": 'metric.type="custom.googleapis.com/neural/gpu_utilization"', "aggregation": { "alignmentPeriod": "60s", "perSeriesAligner": "ALIGN_MEAN" } } } }] } } } ] } } dashboard = monitoring_dashboard_v1.Dashboard(dashboard_config) project_path = f"projects/{project_id}" return client.create_dashboard( parent=project_path, dashboard=dashboard )

Kubernetes Monitoring

Prometheus Deployment

NeuraScale uses Prometheus for metrics collection from all Neural Engine services. The Prometheus instance is deployed as part of the Helm chart with the following configuration:

  • Scrape Interval: 15 seconds
  • Retention: 30 days
  • High Availability: 2 replicas
  • Service Discovery: Automatic via Kubernetes annotations

All Neural Engine services expose metrics endpoints:

  • API Gateway: Port 9092 at /metrics
  • Device Manager: Port 9091 at /metrics
  • Signal Processor: Port 8080 at /metrics
  • ML Pipeline: Port 9093 at /metrics
  • MCP Server: Port 9094 at /metrics
Accessing Prometheus
# Port-forward to access Prometheus UI kubectl port-forward -n neural-engine svc/prometheus 9090:9090 # Access Prometheus at http://localhost:9090
Prometheus Configuration
# neural-engine/kubernetes/monitoring/prometheus-config.yaml apiVersion: v1 kind: ConfigMap metadata: name: prometheus-config data: prometheus.yml: | global: scrape_interval: 15s evaluation_interval: 15s scrape_configs: - job_name: 'neural-engine' kubernetes_sd_configs: - role: pod namespaces: names: - neural-engine relabel_configs: - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape] action: keep regex: true - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path] action: replace target_label: __metrics_path__ regex: (.+) - source_labels: [__address__, __meta_kubernetes_pod_annotation_prometheus_io_port] action: replace regex: ([^:]+)(?::\d+)?;(\d+) replacement: $1:$2 target_label: __address__ - job_name: 'kubernetes-nodes' kubernetes_sd_configs: - role: node relabel_configs: - action: labelmap regex: __meta_kubernetes_node_label_(.+) - job_name: 'kubernetes-cadvisor' kubernetes_sd_configs: - role: node metrics_path: /metrics/cadvisor relabel_configs: - source_labels: [__address__] regex: '([^:]+):\d+' replacement: '$1:10250' target_label: __address__ --- apiVersion: apps/v1 kind: Deployment metadata: name: prometheus spec: replicas: 2 selector: matchLabels: app: prometheus template: metadata: labels: app: prometheus spec: serviceAccountName: prometheus containers: - name: prometheus image: prom/prometheus:latest args: - '--config.file=/etc/prometheus/prometheus.yml' - '--storage.tsdb.path=/prometheus/' - '--storage.tsdb.retention.time=30d' - '--web.enable-lifecycle' ports: - containerPort: 9090 volumeMounts: - name: config mountPath: /etc/prometheus - name: data mountPath: /prometheus resources: requests: memory: "2Gi" cpu: "500m" limits: memory: "4Gi" cpu: "1" volumes: - name: config configMap: name: prometheus-config - name: data persistentVolumeClaim: claimName: prometheus-data

Log Management

Structured Logging

# neural-engine/src/monitoring/structured_logging.py import structlog from google.cloud import logging as cloud_logging import json def setup_structured_logging(service_name: str): """Configure structured logging with Cloud Logging integration""" # Initialize Cloud Logging client client = cloud_logging.Client() handler = client.get_default_handler() # Configure structlog structlog.configure( processors=[ structlog.contextvars.merge_contextvars, structlog.processors.add_log_level, structlog.processors.TimeStamper(fmt="iso"), structlog.dev.set_exc_info, structlog.processors.dict_tracebacks, add_service_context, sanitize_phi, structlog.processors.JSONRenderer() ], context_class=dict, logger_factory=structlog.PrintLoggerFactory(), wrapper_class=structlog.make_filtering_bound_logger(logging.INFO), cache_logger_on_first_use=True, ) return structlog.get_logger(service_name) def add_service_context(logger, method_name, event_dict): """Add service context to all logs""" event_dict['service'] = { 'name': logger.name, 'version': get_version(), 'environment': os.getenv('ENVIRONMENT', 'development') } # Add trace context if available span = trace.get_current_span() if span and span.is_recording(): event_dict['trace'] = { 'trace_id': format(span.get_span_context().trace_id, '032x'), 'span_id': format(span.get_span_context().span_id, '016x') } return event_dict def sanitize_phi(logger, method_name, event_dict): """Remove PHI from logs for HIPAA compliance""" sensitive_fields = ['patient_id', 'session_data', 'neural_signals'] for field in sensitive_fields: if field in event_dict: event_dict[field] = '[REDACTED]' return event_dict # Usage logger = setup_structured_logging("neural-engine") logger.info( "signal_processed", signal_type="EEG", channels=64, duration_ms=1000, processing_time_ms=15.3 )

Log Analysis

# neural-engine/monitoring/log_analysis.py from google.cloud import bigquery from datetime import datetime, timedelta class LogAnalyzer: """Analyze logs for patterns and anomalies""" def __init__(self, project_id: str): self.client = bigquery.Client(project=project_id) self.dataset_id = f"{project_id}.neural_logs" def analyze_error_patterns(self, hours: int = 24) -> Dict[str, Any]: """Analyze error patterns in logs""" query = f""" WITH error_logs AS ( SELECT timestamp, jsonPayload.error_type AS error_type, jsonPayload.error_message AS error_message, jsonPayload.service.name AS service_name, jsonPayload.trace.trace_id AS trace_id FROM `{self.dataset_id}.stderr` WHERE timestamp > TIMESTAMP_SUB(CURRENT_TIMESTAMP(), INTERVAL {hours} HOUR) AND severity = 'ERROR' ) SELECT error_type, COUNT(*) as error_count, COUNT(DISTINCT trace_id) as affected_requests, ARRAY_AGG(DISTINCT error_message LIMIT 5) as sample_messages, MIN(timestamp) as first_occurrence, MAX(timestamp) as last_occurrence FROM error_logs GROUP BY error_type ORDER BY error_count DESC """ results = self.client.query(query).to_dataframe() return { 'error_summary': results.to_dict('records'), 'total_errors': results['error_count'].sum(), 'unique_error_types': len(results), 'analysis_period_hours': hours } def detect_anomalies(self) -> List[Dict[str, Any]]: """Detect anomalies in log patterns""" query = f""" WITH hourly_stats AS ( SELECT TIMESTAMP_TRUNC(timestamp, HOUR) as hour, COUNT(*) as log_count, COUNTIF(severity = 'ERROR') as error_count, AVG(CAST(jsonPayload.processing_time_ms AS FLOAT64)) as avg_processing_time FROM `{self.dataset_id}.stdout` WHERE timestamp > TIMESTAMP_SUB(CURRENT_TIMESTAMP(), INTERVAL 7 DAY) GROUP BY hour ), baseline AS ( SELECT AVG(log_count) as avg_logs, STDDEV(log_count) as stddev_logs, AVG(error_count) as avg_errors, STDDEV(error_count) as stddev_errors FROM hourly_stats ) SELECT h.hour, h.log_count, h.error_count, h.avg_processing_time, CASE WHEN h.log_count > b.avg_logs + (3 * b.stddev_logs) THEN 'high_volume' WHEN h.log_count < b.avg_logs - (3 * b.stddev_logs) THEN 'low_volume' WHEN h.error_count > b.avg_errors + (3 * b.stddev_errors) THEN 'high_errors' ELSE 'normal' END as anomaly_type FROM hourly_stats h CROSS JOIN baseline b WHERE h.hour > TIMESTAMP_SUB(CURRENT_TIMESTAMP(), INTERVAL 24 HOUR) AND ( h.log_count > b.avg_logs + (3 * b.stddev_logs) OR h.log_count < b.avg_logs - (3 * b.stddev_logs) OR h.error_count > b.avg_errors + (3 * b.stddev_errors) ) ORDER BY h.hour DESC """ anomalies = self.client.query(query).to_dataframe() return anomalies.to_dict('records')

Business Metrics

Session Analytics

# neural-engine/src/monitoring/business_metrics.py from prometheus_client import Counter, Gauge, Histogram import structlog # Business metrics sessions_created = Counter( 'neural_sessions_created_total', 'Total neural sessions created', ['device_type', 'signal_type'] ) active_sessions = Gauge( 'neural_sessions_active', 'Currently active neural sessions', ['device_type'] ) session_duration = Histogram( 'neural_session_duration_seconds', 'Neural session duration', ['device_type', 'completion_status'], buckets=[60, 300, 600, 1800, 3600, 7200] # 1m, 5m, 10m, 30m, 1h, 2h ) data_quality_score = Histogram( 'neural_data_quality_score', 'Neural data quality scores', ['device_type', 'signal_type'], buckets=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] ) class BusinessMetricsCollector: """Collect and track business metrics""" def __init__(self): self.logger = structlog.get_logger(__name__) async def track_session_created( self, session_id: str, device_type: str, signal_type: str ): """Track new session creation""" sessions_created.labels( device_type=device_type, signal_type=signal_type ).inc() active_sessions.labels(device_type=device_type).inc() self.logger.info( "session_created", session_id=session_id, device_type=device_type, signal_type=signal_type ) async def track_session_completed( self, session_id: str, device_type: str, duration_seconds: float, completion_status: str, quality_score: float ): """Track session completion""" active_sessions.labels(device_type=device_type).dec() session_duration.labels( device_type=device_type, completion_status=completion_status ).observe(duration_seconds) data_quality_score.labels( device_type=device_type, signal_type=signal_type ).observe(quality_score) self.logger.info( "session_completed", session_id=session_id, duration_seconds=duration_seconds, completion_status=completion_status, quality_score=quality_score )

Compliance Monitoring

# neural-engine/src/monitoring/compliance_metrics.py from prometheus_client import Counter, Gauge import structlog from datetime import datetime # Compliance metrics phi_access_events = Counter( 'neural_phi_access_total', 'PHI access events', ['access_type', 'user_role', 'resource_type'] ) security_events = Counter( 'neural_security_events_total', 'Security events', ['event_type', 'severity'] ) audit_log_size = Gauge( 'neural_audit_log_size_bytes', 'Audit log size in bytes' ) class ComplianceMonitor: """Monitor compliance-related events""" def __init__(self): self.logger = structlog.get_logger(__name__) async def log_phi_access( self, user_id: str, user_role: str, resource_type: str, resource_id: str, access_type: str, ip_address: str ): """Log PHI access for HIPAA compliance""" phi_access_events.labels( access_type=access_type, user_role=user_role, resource_type=resource_type ).inc() # Structured audit log self.logger.info( "phi_access", user_id=user_id, user_role=user_role, resource_type=resource_type, resource_id=resource_id, access_type=access_type, ip_address=ip_address, timestamp=datetime.utcnow().isoformat(), compliance_event=True ) async def log_security_event( self, event_type: str, severity: str, details: Dict[str, Any] ): """Log security events""" security_events.labels( event_type=event_type, severity=severity ).inc() self.logger.warning( "security_event", event_type=event_type, severity=severity, details=details, compliance_event=True )

Alerting Rules

Critical Alerts

# neural-engine/monitoring/alerts/critical.yaml groups: - name: neural_critical interval: 30s rules: - alert: NeuralEngineDown expr: up{job="neural-engine"} == 0 for: 2m labels: severity: critical team: platform annotations: summary: "Neural Engine instance {{ $labels.instance }} is down" description: "Neural Engine has been down for more than 2 minutes." runbook_url: "https://neurascale.docs/runbooks/neural-engine-down" - alert: HighErrorRate expr: | rate(http_requests_total{status=~"5.."}[5m]) / rate(http_requests_total[5m]) > 0.05 for: 5m labels: severity: critical team: platform annotations: summary: "High error rate on {{ $labels.job }}" description: "Error rate is above 5% for the last 5 minutes" - alert: DatabaseConnectionPoolExhausted expr: database_connections_active / database_connections_max > 0.9 for: 5m labels: severity: critical team: platform annotations: summary: "Database connection pool nearly exhausted" description: "{{ $value | humanizePercentage }} of connections are in use" - alert: GPUMemoryExhausted expr: neural_gpu_memory_usage_bytes / neural_gpu_memory_total_bytes > 0.95 for: 2m labels: severity: critical team: ml annotations: summary: "GPU memory nearly exhausted on {{ $labels.device_name }}" description: "GPU memory usage is at {{ $value | humanizePercentage }}"

Dashboards

Grafana Dashboard Configuration

{ "dashboard": { "title": "NeuraScale Neural Engine", "panels": [ { "title": "Request Rate", "targets": [ { "expr": "rate(http_requests_total[5m])", "legendFormat": "{{method}} {{endpoint}}" } ], "type": "graph" }, { "title": "Latency Percentiles", "targets": [ { "expr": "histogram_quantile(0.5, rate(http_request_duration_seconds_bucket[5m]))", "legendFormat": "p50" }, { "expr": "histogram_quantile(0.95, rate(http_request_duration_seconds_bucket[5m]))", "legendFormat": "p95" }, { "expr": "histogram_quantile(0.99, rate(http_request_duration_seconds_bucket[5m]))", "legendFormat": "p99" } ], "type": "graph" }, { "title": "Active Sessions", "targets": [ { "expr": "neural_sessions_active", "legendFormat": "{{device_type}}" } ], "type": "graph" }, { "title": "Processing Queue Depth", "targets": [ { "expr": "neural_processing_queue_depth", "legendFormat": "{{queue_name}}" } ], "type": "graph" } ] } }

Monitoring Checklist

  • Configure Prometheus metrics collection
  • Set up Cloud Monitoring dashboards
  • Implement distributed tracing with OpenTelemetry
  • Configure Sentry error tracking
  • Set up log aggregation and analysis
  • Create alerting rules for critical issues
  • Implement SLO monitoring
  • Configure compliance audit logging
  • Set up performance profiling
  • Create runbooks for common issues

Comprehensive monitoring ensures NeuraScale operates reliably and efficiently, enabling quick detection and resolution of issues while maintaining compliance requirements.

Last updated on