Skip to Content
DocumentationClinical Workflows

Clinical Workflows

This guide covers clinical applications of NeuraScale, including HIPAA compliance, patient data management, and specialized clinical protocols for various neurological conditions.

Clinical Overview

NeuraScale provides a comprehensive platform for clinical brain-computer interface applications, designed to meet healthcare standards and regulatory requirements.

Clinical Use Cases

  • Epilepsy Monitoring: Continuous seizure detection and prediction
  • Stroke Rehabilitation: Motor imagery training and recovery assessment
  • Sleep Disorders: Automated sleep staging and apnea detection
  • Locked-in Syndrome: Communication interface development
  • Cognitive Assessment: Attention, memory, and executive function evaluation
  • Neurofeedback Therapy: Real-time brain training protocols

Regulatory Compliance

NeuraScale is designed to support HIPAA, GDPR, and FDA validation requirements. Always consult with your institution’s compliance team before implementing clinical protocols.

Patient Data Management

HIPAA-Compliant Setup

Configure HIPAA Compliance

from neurascale import NeuraScaleClient from neurascale.clinical import HIPAACompliantClient # Initialize HIPAA-compliant client clinical_client = HIPAACompliantClient( api_key="your-api-key", compliance_mode="strict", audit_logging=True, encryption_level="high" ) # Configure patient data handling patient_config = { "de_identification": { "method": "safe_harbor", # safe_harbor, expert_determination "remove_identifiers": True, "date_shifting": True, "age_threshold": 89 # Report as ">89" for patients over 89 }, "access_controls": { "role_based": True, "minimum_necessary": True, "authorization_required": True }, "audit_trail": { "log_all_access": True, "log_modifications": True, "log_exports": True, "retention_period": 2555 # 7 years in days } } await clinical_client.configure_compliance(patient_config)

Create Patient Record

# Create anonymized patient record patient_data = { "patient_id": "P001_ANON", # Anonymized ID "demographics": { "age_range": "25-30", # Age ranges instead of exact age "gender": "F", "handedness": "right" }, "medical_history": { "diagnosis": "epilepsy", "icd10_code": "G40.9", "onset_date": "2020-Q2", # Quarter instead of exact date "medications": ["levetiracetam", "lamotrigine"] }, "consent": { "research_participation": True, "data_sharing": False, "contact_future": True, "signed_date": "2024-01-15", "hipaa_authorization": True } } patient = await clinical_client.patients.create(patient_data) print(f"Patient created: {patient.anonymous_id}")

Secure Session Management

# Create clinical session with enhanced security session_config = { "patient_id": patient.anonymous_id, "protocol": "epilepsy_monitoring", "clinician_id": "DR_SMITH_001", "location": "EEG_LAB_1", "security": { "access_level": "clinical", "encryption": "AES-256", "audit_required": True }, "clinical_metadata": { "indication": "seizure_monitoring", "seizure_free_days": 14, "medication_compliance": "good", "sleep_deprivation": False } } clinical_session = await clinical_client.sessions.create_clinical(session_config)

Epilepsy Monitoring

Continuous Seizure Detection

Epilepsy Monitoring Setup

from neurascale.clinical.epilepsy import SeizureDetector, EpilepsyProtocol # Configure epilepsy monitoring protocol epilepsy_config = { "patient_profile": { "seizure_type": "focal", # focal, generalized, unknown "seizure_frequency": "weekly", "aura_present": True, "seizure_duration_avg": 120, # seconds "post_ictal_duration": 300 # seconds }, "monitoring": { "duration": 72, # hours "device_type": "clinical_eeg", "channels": 32, "sampling_rate": 500, "video_sync": True }, "detection": { "algorithms": ["svm", "lstm", "spectral"], "sensitivity": 0.95, "specificity": 0.90, "detection_delay_max": 5 # seconds } } # Initialize epilepsy protocol epilepsy_protocol = EpilepsyProtocol(epilepsy_config) seizure_detector = SeizureDetector( model_type="ensemble", patient_specific=True ) # Train patient-specific model if data available if patient.has_historical_data: training_data = await clinical_client.data.get_patient_seizures( patient_id=patient.anonymous_id, include_interictal=True ) await seizure_detector.train_patient_model(training_data)

Clinical Device Configuration

# Configure clinical EEG system clinical_eeg_config = { "device_id": "clinical_eeg_001", "device_type": "brainproducts_actichamp", "acquisition": { "sample_rate": 500, "channels": [ # Standard 10-20 system for epilepsy monitoring "Fp1", "Fp2", "F7", "F3", "Fz", "F4", "F8", "T7", "C3", "Cz", "C4", "T8", "P7", "P3", "Pz", "P4", "P8", "O1", "Oz", "O2", # Additional temporal chains "F9", "F10", "T9", "T10", "P9", "P10", # Sphenoidal electrodes "Sp1", "Sp2", # ECG and EMG for artifact detection "ECG", "EMG1", "EMG2", "EOG" ], "reference": "average", "ground": "AFz" }, "clinical_features": { "impedance_monitoring": True, "safety_limits": { "max_voltage": 100, # µV "max_impedance": 5000 # Ω }, "artifact_detection": { "muscle": True, "eye_movement": True, "movement": True, "electrode_pop": True } } } clinical_eeg = await clinical_client.devices.connect( "clinical_eeg_001", clinical_eeg_config )

Stroke Rehabilitation

Motor Imagery Training

from neurascale.clinical.rehabilitation import MotorImageryTherapy # Configure stroke rehabilitation protocol stroke_config = { "patient_profile": { "stroke_type": "ischemic", # ischemic, hemorrhagic "affected_hemisphere": "left", "time_since_stroke": 90, # days "motor_impairment": { "upper_extremity": "moderate", "hand_function": "severe", "fugl_meyer_score": 35 # out of 66 } }, "therapy_protocol": { "sessions_per_week": 3, "session_duration": 45, # minutes "total_weeks": 12, "progression_criteria": { "accuracy_threshold": 0.70, "consistency_required": 5 # consecutive sessions } }, "neurofeedback": { "feedback_type": "visual_cursor", "update_rate": 10, # Hz "trial_duration": 4, # seconds "rest_duration": 3 # seconds } } # Initialize motor imagery therapy mi_therapy = MotorImageryTherapy(stroke_config) async def conduct_therapy_session(): """Conduct a motor imagery therapy session""" # Pre-session assessment baseline = await assess_motor_function(patient) # Configure BCI for motor imagery mi_bci_config = { "channels": ["C3", "C4", "Cz", "FC1", "FC2", "CP1", "CP2"], "frequency_bands": { "mu": [8, 12], "beta": [16, 24] }, "classification": { "classes": ["left_hand", "right_hand", "rest"], "feature_extraction": "csp", # Common Spatial Patterns "classifier": "lda" } } # Start therapy session session = await mi_therapy.start_session( patient_id=patient.anonymous_id, config=mi_bci_config ) # Calibration phase print("Starting calibration...") calibration_data = await mi_therapy.run_calibration( trials_per_class=20, instruction_duration=2, imagery_duration=4 ) # Train classifier classifier = await mi_therapy.train_classifier(calibration_data) accuracy = await mi_therapy.validate_classifier(classifier) print(f"Classifier accuracy: {accuracy:.2%}") if accuracy < 0.60: print("Accuracy too low, adjusting parameters...") # Adjust parameters and retrain classifier = await mi_therapy.retrain_with_adjustments( calibration_data, adjustments={"feature_selection": True, "regularization": 0.1} ) # Online therapy phase print("Starting online therapy...") therapy_results = await mi_therapy.run_online_therapy( classifier=classifier, trials=60, feedback_enabled=True ) # Post-session assessment post_assessment = await assess_motor_function(patient) # Log session results session_summary = { "date": datetime.now().isoformat(), "duration": therapy_results["duration"], "accuracy": therapy_results["accuracy"], "improvement": post_assessment["score"] - baseline["score"], "patient_feedback": therapy_results["patient_feedback"] } await clinical_client.sessions.log_therapy_session( patient_id=patient.anonymous_id, session_type="motor_imagery", results=session_summary ) async def assess_motor_function(patient): """Assess motor function using standardized scales""" # Fugl-Meyer Assessment (automated components) fm_assessment = await conduct_fugl_meyer_assessment(patient) # Action Research Arm Test (ARAT) arat_score = await conduct_arat_assessment(patient) # Nine-Hole Peg Test peg_test = await conduct_peg_test(patient) assessment = { "fugl_meyer": fm_assessment, "arat": arat_score, "nine_hole_peg": peg_test, "overall_score": calculate_composite_score([ fm_assessment, arat_score, peg_test ]) } return assessment

Progress Tracking

async def track_rehabilitation_progress(): """Track long-term rehabilitation progress""" # Get all therapy sessions for patient sessions = await clinical_client.sessions.get_patient_sessions( patient_id=patient.anonymous_id, session_type="motor_imagery" ) # Analyze progress trends progress_analysis = { "accuracy_trend": analyze_accuracy_trend(sessions), "motor_improvement": analyze_motor_improvement(sessions), "session_consistency": analyze_session_consistency(sessions), "plateau_detection": detect_learning_plateau(sessions) } # Generate progress report progress_report = await generate_progress_report(progress_analysis) # Adjust therapy parameters if needed if progress_analysis["plateau_detection"]["plateau_detected"]: new_parameters = await suggest_parameter_adjustments(sessions) await mi_therapy.update_parameters(new_parameters) return progress_report def analyze_accuracy_trend(sessions): """Analyze BCI accuracy improvement over time""" accuracies = [session["accuracy"] for session in sessions] dates = [session["date"] for session in sessions] # Linear regression to find trend from scipy import stats slope, intercept, r_value, p_value, std_err = stats.linregress( range(len(accuracies)), accuracies ) trend_analysis = { "initial_accuracy": accuracies[0] if accuracies else 0, "current_accuracy": accuracies[-1] if accuracies else 0, "improvement_rate": slope, "correlation": r_value, "significance": p_value < 0.05, "total_improvement": accuracies[-1] - accuracies[0] if len(accuracies) > 1 else 0 } return trend_analysis

Sleep Study Protocols

Automated Sleep Staging

from neurascale.clinical.sleep import SleepStudyProtocol # Configure sleep study sleep_config = { "study_type": "diagnostic", # diagnostic, titration, split_night "channels": { "eeg": ["F4-M1", "C4-M1", "O2-M1"], # Standard sleep EEG "eog": ["ROC-M1", "LOC-M1"], # Eye movements "emg": ["chin", "left_leg", "right_leg"], # Muscle activity "respiratory": ["airflow", "chest", "abdomen"], "cardiac": ["ECG"], "oxygen": ["SpO2"] }, "staging": { "epoch_duration": 30, # seconds "algorithm": "aasm_2017", # AASM 2017 criteria "automatic_staging": True, "manual_review": True } } sleep_protocol = SleepStudyProtocol(sleep_config) async def conduct_sleep_study(): """Conduct overnight sleep study""" # Start sleep monitoring study_session = await sleep_protocol.start_study( patient_id=patient.anonymous_id, study_date=datetime.now() ) # Monitor in real-time async def monitor_sleep(): stream = await study_session.start_monitoring() async for epoch in stream: # 30-second epochs sleep_stage = await sleep_protocol.classify_epoch(epoch) # Detect sleep events events = await sleep_protocol.detect_events(epoch) # Log stage and events await study_session.log_epoch( stage=sleep_stage, events=events, quality=epoch.signal_quality ) # Real-time alerts for significant events if events: for event in events: if event.type == "apnea" and event.duration > 30: await send_clinical_alert( "prolonged_apnea", patient.anonymous_id, {"duration": event.duration} ) # Run overnight monitoring await monitor_sleep() # Generate sleep report sleep_report = await generate_sleep_report(study_session) return sleep_report async def analyze_sleep_architecture(study_session): """Analyze sleep architecture and generate clinical metrics""" epochs = await study_session.get_all_epochs() # Calculate sleep metrics sleep_metrics = { "total_recording_time": len(epochs) * 0.5, # minutes "total_sleep_time": sum(1 for e in epochs if e.stage != "wake") * 0.5, "sleep_efficiency": calculate_sleep_efficiency(epochs), "sleep_onset_latency": calculate_sleep_onset_latency(epochs), "rem_onset_latency": calculate_rem_onset_latency(epochs), "stage_percentages": calculate_stage_percentages(epochs), "arousal_index": calculate_arousal_index(epochs), "ahi": calculate_apnea_hypopnea_index(epochs) # Apnea-Hypopnea Index } return sleep_metrics

Quality Assurance and Validation

Clinical Data Validation

from neurascale.clinical.validation import ClinicalDataValidator class ClinicalQualityAssurance: def __init__(self): self.validator = ClinicalDataValidator() self.quality_thresholds = { "signal_quality": 0.85, "impedance_max": 5000, # 5kΩ "artifact_percentage_max": 0.15, "data_completeness_min": 0.95 } async def validate_clinical_session(self, session_id): """Comprehensive validation of clinical session data""" validation_results = { "session_id": session_id, "validation_timestamp": datetime.now().isoformat(), "tests_performed": [], "passed": True, "issues": [] } # 1. Signal Quality Assessment signal_quality = await self.validator.assess_signal_quality(session_id) validation_results["tests_performed"].append("signal_quality") if signal_quality["average_quality"] < self.quality_thresholds["signal_quality"]: validation_results["passed"] = False validation_results["issues"].append({ "type": "signal_quality", "severity": "warning", "message": f"Signal quality {signal_quality['average_quality']:.2f} below threshold" }) # 2. Impedance Check impedance_data = await self.validator.check_impedances(session_id) validation_results["tests_performed"].append("impedance_check") high_impedance_channels = [ ch for ch, imp in impedance_data.items() if imp > self.quality_thresholds["impedance_max"] ] if high_impedance_channels: validation_results["passed"] = False validation_results["issues"].append({ "type": "high_impedance", "severity": "error", "message": f"High impedance on channels: {high_impedance_channels}" }) # 3. Artifact Assessment artifact_analysis = await self.validator.analyze_artifacts(session_id) validation_results["tests_performed"].append("artifact_analysis") if artifact_analysis["percentage"] > self.quality_thresholds["artifact_percentage_max"]: validation_results["issues"].append({ "type": "excessive_artifacts", "severity": "warning", "message": f"Artifacts present in {artifact_analysis['percentage']:.1%} of data" }) # 4. Data Completeness completeness = await self.validator.check_data_completeness(session_id) validation_results["tests_performed"].append("data_completeness") if completeness < self.quality_thresholds["data_completeness_min"]: validation_results["passed"] = False validation_results["issues"].append({ "type": "incomplete_data", "severity": "error", "message": f"Data completeness {completeness:.1%} below minimum threshold" }) # 5. Clinical Protocol Compliance protocol_compliance = await self.validator.check_protocol_compliance(session_id) validation_results["tests_performed"].append("protocol_compliance") if not protocol_compliance["compliant"]: validation_results["issues"].extend([ { "type": "protocol_violation", "severity": "error", "message": violation } for violation in protocol_compliance["violations"] ]) # Log validation results await clinical_client.audit.log_validation(validation_results) return validation_results async def generate_quality_report(self, validation_results): """Generate clinical quality assurance report""" report = { "validation_summary": validation_results, "quality_score": self.calculate_quality_score(validation_results), "recommendations": self.generate_recommendations(validation_results), "clinical_usability": self.assess_clinical_usability(validation_results) } return report # Clinical audit trail async def maintain_audit_trail(): """Maintain comprehensive audit trail for clinical compliance""" audit_events = [ "patient_access", "data_modification", "report_generation", "data_export", "system_login", "configuration_change" ] for event_type in audit_events: await clinical_client.audit.configure_logging( event_type=event_type, log_level="detailed", retention_period=2555, # 7 years encryption=True )

Regulatory Documentation

FDA Validation Support

# Generate FDA-compliant documentation async def generate_fda_documentation(): """Generate documentation for FDA submission""" fda_docs = { "device_description": await generate_device_description(), "clinical_protocol": await generate_clinical_protocol(), "safety_analysis": await generate_safety_analysis(), "efficacy_data": await generate_efficacy_data(), "quality_system": await generate_quality_system_docs(), "risk_analysis": await generate_risk_analysis() } # Compile comprehensive submission package submission_package = await compile_fda_submission(fda_docs) return submission_package async def generate_clinical_protocol(): """Generate clinical protocol documentation""" protocol = { "title": "Clinical Evaluation of NeuraScale BCI System", "objectives": { "primary": "Demonstrate safety and efficacy for intended use", "secondary": ["User satisfaction", "System reliability", "Clinical workflow integration"] }, "study_design": { "type": "prospective_clinical_study", "duration": "12_months", "sample_size": 50, "inclusion_criteria": [...], "exclusion_criteria": [...] }, "endpoints": { "primary": "Classification accuracy > 70%", "secondary": ["System uptime > 99%", "User satisfaction > 4/5"] }, "statistical_plan": { "power_analysis": "80% power to detect 10% difference", "alpha_level": 0.05, "analysis_method": "intention_to_treat" } } return protocol

Clinical applications require proper medical oversight, institutional review board approval, and compliance with local regulations. This documentation provides technical guidance only and should not replace proper clinical protocols.

Integration with Hospital Systems

HL7 FHIR Integration

from neurascale.clinical.integration import HL7FHIRInterface # Configure hospital system integration hospital_integration = { "ehr_system": "epic", # epic, cerner, allscripts "fhir_server": "https://fhir.hospital.org/R4", "authentication": { "method": "oauth2", "client_id": "neurascale_client", "scopes": ["patient/read", "observation/write", "diagnosticreport/write"] } } fhir_client = HL7FHIRInterface(hospital_integration) async def sync_with_ehr(): """Synchronize NeuraScale data with hospital EHR""" # Get patient data from EHR patient_fhir = await fhir_client.get_patient(patient.hospital_id) # Create FHIR observation for EEG data eeg_observation = { "resourceType": "Observation", "status": "final", "category": [ { "coding": [ { "system": "http://terminology.hl7.org/CodeSystem/observation-category", "code": "survey" } ] } ], "code": { "coding": [ { "system": "http://loinc.org", "code": "54649-5", "display": "EEG study" } ] }, "subject": {"reference": f"Patient/{patient.hospital_id}"}, "effectiveDateTime": session.start_time.isoformat(), "valueString": "Normal EEG with no epileptiform activity" } # Submit to EHR await fhir_client.create_observation(eeg_observation)

This comprehensive clinical workflow documentation provides healthcare professionals with the necessary guidance to implement NeuraScale in clinical settings while maintaining compliance with healthcare regulations and standards.

Last updated on