Clinical Workflows
This guide covers clinical applications of NeuraScale, including HIPAA compliance, patient data management, and specialized clinical protocols for various neurological conditions.
Clinical Overview
NeuraScale provides a comprehensive platform for clinical brain-computer interface applications, designed to meet healthcare standards and regulatory requirements.
Clinical Use Cases
- Epilepsy Monitoring: Continuous seizure detection and prediction
- Stroke Rehabilitation: Motor imagery training and recovery assessment
- Sleep Disorders: Automated sleep staging and apnea detection
- Locked-in Syndrome: Communication interface development
- Cognitive Assessment: Attention, memory, and executive function evaluation
- Neurofeedback Therapy: Real-time brain training protocols
Regulatory Compliance
NeuraScale is designed to support HIPAA, GDPR, and FDA validation requirements. Always consult with your institution’s compliance team before implementing clinical protocols.
Patient Data Management
HIPAA-Compliant Setup
Configure HIPAA Compliance
from neurascale import NeuraScaleClient
from neurascale.clinical import HIPAACompliantClient
# Initialize HIPAA-compliant client
clinical_client = HIPAACompliantClient(
api_key="your-api-key",
compliance_mode="strict",
audit_logging=True,
encryption_level="high"
)
# Configure patient data handling
patient_config = {
"de_identification": {
"method": "safe_harbor", # safe_harbor, expert_determination
"remove_identifiers": True,
"date_shifting": True,
"age_threshold": 89 # Report as ">89" for patients over 89
},
"access_controls": {
"role_based": True,
"minimum_necessary": True,
"authorization_required": True
},
"audit_trail": {
"log_all_access": True,
"log_modifications": True,
"log_exports": True,
"retention_period": 2555 # 7 years in days
}
}
await clinical_client.configure_compliance(patient_config)
Create Patient Record
# Create anonymized patient record
patient_data = {
"patient_id": "P001_ANON", # Anonymized ID
"demographics": {
"age_range": "25-30", # Age ranges instead of exact age
"gender": "F",
"handedness": "right"
},
"medical_history": {
"diagnosis": "epilepsy",
"icd10_code": "G40.9",
"onset_date": "2020-Q2", # Quarter instead of exact date
"medications": ["levetiracetam", "lamotrigine"]
},
"consent": {
"research_participation": True,
"data_sharing": False,
"contact_future": True,
"signed_date": "2024-01-15",
"hipaa_authorization": True
}
}
patient = await clinical_client.patients.create(patient_data)
print(f"Patient created: {patient.anonymous_id}")
Secure Session Management
# Create clinical session with enhanced security
session_config = {
"patient_id": patient.anonymous_id,
"protocol": "epilepsy_monitoring",
"clinician_id": "DR_SMITH_001",
"location": "EEG_LAB_1",
"security": {
"access_level": "clinical",
"encryption": "AES-256",
"audit_required": True
},
"clinical_metadata": {
"indication": "seizure_monitoring",
"seizure_free_days": 14,
"medication_compliance": "good",
"sleep_deprivation": False
}
}
clinical_session = await clinical_client.sessions.create_clinical(session_config)
Epilepsy Monitoring
Continuous Seizure Detection
Setup
Epilepsy Monitoring Setup
from neurascale.clinical.epilepsy import SeizureDetector, EpilepsyProtocol
# Configure epilepsy monitoring protocol
epilepsy_config = {
"patient_profile": {
"seizure_type": "focal", # focal, generalized, unknown
"seizure_frequency": "weekly",
"aura_present": True,
"seizure_duration_avg": 120, # seconds
"post_ictal_duration": 300 # seconds
},
"monitoring": {
"duration": 72, # hours
"device_type": "clinical_eeg",
"channels": 32,
"sampling_rate": 500,
"video_sync": True
},
"detection": {
"algorithms": ["svm", "lstm", "spectral"],
"sensitivity": 0.95,
"specificity": 0.90,
"detection_delay_max": 5 # seconds
}
}
# Initialize epilepsy protocol
epilepsy_protocol = EpilepsyProtocol(epilepsy_config)
seizure_detector = SeizureDetector(
model_type="ensemble",
patient_specific=True
)
# Train patient-specific model if data available
if patient.has_historical_data:
training_data = await clinical_client.data.get_patient_seizures(
patient_id=patient.anonymous_id,
include_interictal=True
)
await seizure_detector.train_patient_model(training_data)
Clinical Device Configuration
# Configure clinical EEG system
clinical_eeg_config = {
"device_id": "clinical_eeg_001",
"device_type": "brainproducts_actichamp",
"acquisition": {
"sample_rate": 500,
"channels": [
# Standard 10-20 system for epilepsy monitoring
"Fp1", "Fp2", "F7", "F3", "Fz", "F4", "F8",
"T7", "C3", "Cz", "C4", "T8",
"P7", "P3", "Pz", "P4", "P8",
"O1", "Oz", "O2",
# Additional temporal chains
"F9", "F10", "T9", "T10", "P9", "P10",
# Sphenoidal electrodes
"Sp1", "Sp2",
# ECG and EMG for artifact detection
"ECG", "EMG1", "EMG2", "EOG"
],
"reference": "average",
"ground": "AFz"
},
"clinical_features": {
"impedance_monitoring": True,
"safety_limits": {
"max_voltage": 100, # µV
"max_impedance": 5000 # Ω
},
"artifact_detection": {
"muscle": True,
"eye_movement": True,
"movement": True,
"electrode_pop": True
}
}
}
clinical_eeg = await clinical_client.devices.connect(
"clinical_eeg_001",
clinical_eeg_config
)
Stroke Rehabilitation
Motor Imagery Training
from neurascale.clinical.rehabilitation import MotorImageryTherapy
# Configure stroke rehabilitation protocol
stroke_config = {
"patient_profile": {
"stroke_type": "ischemic", # ischemic, hemorrhagic
"affected_hemisphere": "left",
"time_since_stroke": 90, # days
"motor_impairment": {
"upper_extremity": "moderate",
"hand_function": "severe",
"fugl_meyer_score": 35 # out of 66
}
},
"therapy_protocol": {
"sessions_per_week": 3,
"session_duration": 45, # minutes
"total_weeks": 12,
"progression_criteria": {
"accuracy_threshold": 0.70,
"consistency_required": 5 # consecutive sessions
}
},
"neurofeedback": {
"feedback_type": "visual_cursor",
"update_rate": 10, # Hz
"trial_duration": 4, # seconds
"rest_duration": 3 # seconds
}
}
# Initialize motor imagery therapy
mi_therapy = MotorImageryTherapy(stroke_config)
async def conduct_therapy_session():
"""Conduct a motor imagery therapy session"""
# Pre-session assessment
baseline = await assess_motor_function(patient)
# Configure BCI for motor imagery
mi_bci_config = {
"channels": ["C3", "C4", "Cz", "FC1", "FC2", "CP1", "CP2"],
"frequency_bands": {
"mu": [8, 12],
"beta": [16, 24]
},
"classification": {
"classes": ["left_hand", "right_hand", "rest"],
"feature_extraction": "csp", # Common Spatial Patterns
"classifier": "lda"
}
}
# Start therapy session
session = await mi_therapy.start_session(
patient_id=patient.anonymous_id,
config=mi_bci_config
)
# Calibration phase
print("Starting calibration...")
calibration_data = await mi_therapy.run_calibration(
trials_per_class=20,
instruction_duration=2,
imagery_duration=4
)
# Train classifier
classifier = await mi_therapy.train_classifier(calibration_data)
accuracy = await mi_therapy.validate_classifier(classifier)
print(f"Classifier accuracy: {accuracy:.2%}")
if accuracy < 0.60:
print("Accuracy too low, adjusting parameters...")
# Adjust parameters and retrain
classifier = await mi_therapy.retrain_with_adjustments(
calibration_data,
adjustments={"feature_selection": True, "regularization": 0.1}
)
# Online therapy phase
print("Starting online therapy...")
therapy_results = await mi_therapy.run_online_therapy(
classifier=classifier,
trials=60,
feedback_enabled=True
)
# Post-session assessment
post_assessment = await assess_motor_function(patient)
# Log session results
session_summary = {
"date": datetime.now().isoformat(),
"duration": therapy_results["duration"],
"accuracy": therapy_results["accuracy"],
"improvement": post_assessment["score"] - baseline["score"],
"patient_feedback": therapy_results["patient_feedback"]
}
await clinical_client.sessions.log_therapy_session(
patient_id=patient.anonymous_id,
session_type="motor_imagery",
results=session_summary
)
async def assess_motor_function(patient):
"""Assess motor function using standardized scales"""
# Fugl-Meyer Assessment (automated components)
fm_assessment = await conduct_fugl_meyer_assessment(patient)
# Action Research Arm Test (ARAT)
arat_score = await conduct_arat_assessment(patient)
# Nine-Hole Peg Test
peg_test = await conduct_peg_test(patient)
assessment = {
"fugl_meyer": fm_assessment,
"arat": arat_score,
"nine_hole_peg": peg_test,
"overall_score": calculate_composite_score([
fm_assessment, arat_score, peg_test
])
}
return assessment
Progress Tracking
async def track_rehabilitation_progress():
"""Track long-term rehabilitation progress"""
# Get all therapy sessions for patient
sessions = await clinical_client.sessions.get_patient_sessions(
patient_id=patient.anonymous_id,
session_type="motor_imagery"
)
# Analyze progress trends
progress_analysis = {
"accuracy_trend": analyze_accuracy_trend(sessions),
"motor_improvement": analyze_motor_improvement(sessions),
"session_consistency": analyze_session_consistency(sessions),
"plateau_detection": detect_learning_plateau(sessions)
}
# Generate progress report
progress_report = await generate_progress_report(progress_analysis)
# Adjust therapy parameters if needed
if progress_analysis["plateau_detection"]["plateau_detected"]:
new_parameters = await suggest_parameter_adjustments(sessions)
await mi_therapy.update_parameters(new_parameters)
return progress_report
def analyze_accuracy_trend(sessions):
"""Analyze BCI accuracy improvement over time"""
accuracies = [session["accuracy"] for session in sessions]
dates = [session["date"] for session in sessions]
# Linear regression to find trend
from scipy import stats
slope, intercept, r_value, p_value, std_err = stats.linregress(
range(len(accuracies)), accuracies
)
trend_analysis = {
"initial_accuracy": accuracies[0] if accuracies else 0,
"current_accuracy": accuracies[-1] if accuracies else 0,
"improvement_rate": slope,
"correlation": r_value,
"significance": p_value < 0.05,
"total_improvement": accuracies[-1] - accuracies[0] if len(accuracies) > 1 else 0
}
return trend_analysis
Sleep Study Protocols
Automated Sleep Staging
from neurascale.clinical.sleep import SleepStudyProtocol
# Configure sleep study
sleep_config = {
"study_type": "diagnostic", # diagnostic, titration, split_night
"channels": {
"eeg": ["F4-M1", "C4-M1", "O2-M1"], # Standard sleep EEG
"eog": ["ROC-M1", "LOC-M1"], # Eye movements
"emg": ["chin", "left_leg", "right_leg"], # Muscle activity
"respiratory": ["airflow", "chest", "abdomen"],
"cardiac": ["ECG"],
"oxygen": ["SpO2"]
},
"staging": {
"epoch_duration": 30, # seconds
"algorithm": "aasm_2017", # AASM 2017 criteria
"automatic_staging": True,
"manual_review": True
}
}
sleep_protocol = SleepStudyProtocol(sleep_config)
async def conduct_sleep_study():
"""Conduct overnight sleep study"""
# Start sleep monitoring
study_session = await sleep_protocol.start_study(
patient_id=patient.anonymous_id,
study_date=datetime.now()
)
# Monitor in real-time
async def monitor_sleep():
stream = await study_session.start_monitoring()
async for epoch in stream:
# 30-second epochs
sleep_stage = await sleep_protocol.classify_epoch(epoch)
# Detect sleep events
events = await sleep_protocol.detect_events(epoch)
# Log stage and events
await study_session.log_epoch(
stage=sleep_stage,
events=events,
quality=epoch.signal_quality
)
# Real-time alerts for significant events
if events:
for event in events:
if event.type == "apnea" and event.duration > 30:
await send_clinical_alert(
"prolonged_apnea",
patient.anonymous_id,
{"duration": event.duration}
)
# Run overnight monitoring
await monitor_sleep()
# Generate sleep report
sleep_report = await generate_sleep_report(study_session)
return sleep_report
async def analyze_sleep_architecture(study_session):
"""Analyze sleep architecture and generate clinical metrics"""
epochs = await study_session.get_all_epochs()
# Calculate sleep metrics
sleep_metrics = {
"total_recording_time": len(epochs) * 0.5, # minutes
"total_sleep_time": sum(1 for e in epochs if e.stage != "wake") * 0.5,
"sleep_efficiency": calculate_sleep_efficiency(epochs),
"sleep_onset_latency": calculate_sleep_onset_latency(epochs),
"rem_onset_latency": calculate_rem_onset_latency(epochs),
"stage_percentages": calculate_stage_percentages(epochs),
"arousal_index": calculate_arousal_index(epochs),
"ahi": calculate_apnea_hypopnea_index(epochs) # Apnea-Hypopnea Index
}
return sleep_metrics
Quality Assurance and Validation
Clinical Data Validation
from neurascale.clinical.validation import ClinicalDataValidator
class ClinicalQualityAssurance:
def __init__(self):
self.validator = ClinicalDataValidator()
self.quality_thresholds = {
"signal_quality": 0.85,
"impedance_max": 5000, # 5kΩ
"artifact_percentage_max": 0.15,
"data_completeness_min": 0.95
}
async def validate_clinical_session(self, session_id):
"""Comprehensive validation of clinical session data"""
validation_results = {
"session_id": session_id,
"validation_timestamp": datetime.now().isoformat(),
"tests_performed": [],
"passed": True,
"issues": []
}
# 1. Signal Quality Assessment
signal_quality = await self.validator.assess_signal_quality(session_id)
validation_results["tests_performed"].append("signal_quality")
if signal_quality["average_quality"] < self.quality_thresholds["signal_quality"]:
validation_results["passed"] = False
validation_results["issues"].append({
"type": "signal_quality",
"severity": "warning",
"message": f"Signal quality {signal_quality['average_quality']:.2f} below threshold"
})
# 2. Impedance Check
impedance_data = await self.validator.check_impedances(session_id)
validation_results["tests_performed"].append("impedance_check")
high_impedance_channels = [
ch for ch, imp in impedance_data.items()
if imp > self.quality_thresholds["impedance_max"]
]
if high_impedance_channels:
validation_results["passed"] = False
validation_results["issues"].append({
"type": "high_impedance",
"severity": "error",
"message": f"High impedance on channels: {high_impedance_channels}"
})
# 3. Artifact Assessment
artifact_analysis = await self.validator.analyze_artifacts(session_id)
validation_results["tests_performed"].append("artifact_analysis")
if artifact_analysis["percentage"] > self.quality_thresholds["artifact_percentage_max"]:
validation_results["issues"].append({
"type": "excessive_artifacts",
"severity": "warning",
"message": f"Artifacts present in {artifact_analysis['percentage']:.1%} of data"
})
# 4. Data Completeness
completeness = await self.validator.check_data_completeness(session_id)
validation_results["tests_performed"].append("data_completeness")
if completeness < self.quality_thresholds["data_completeness_min"]:
validation_results["passed"] = False
validation_results["issues"].append({
"type": "incomplete_data",
"severity": "error",
"message": f"Data completeness {completeness:.1%} below minimum threshold"
})
# 5. Clinical Protocol Compliance
protocol_compliance = await self.validator.check_protocol_compliance(session_id)
validation_results["tests_performed"].append("protocol_compliance")
if not protocol_compliance["compliant"]:
validation_results["issues"].extend([
{
"type": "protocol_violation",
"severity": "error",
"message": violation
}
for violation in protocol_compliance["violations"]
])
# Log validation results
await clinical_client.audit.log_validation(validation_results)
return validation_results
async def generate_quality_report(self, validation_results):
"""Generate clinical quality assurance report"""
report = {
"validation_summary": validation_results,
"quality_score": self.calculate_quality_score(validation_results),
"recommendations": self.generate_recommendations(validation_results),
"clinical_usability": self.assess_clinical_usability(validation_results)
}
return report
# Clinical audit trail
async def maintain_audit_trail():
"""Maintain comprehensive audit trail for clinical compliance"""
audit_events = [
"patient_access",
"data_modification",
"report_generation",
"data_export",
"system_login",
"configuration_change"
]
for event_type in audit_events:
await clinical_client.audit.configure_logging(
event_type=event_type,
log_level="detailed",
retention_period=2555, # 7 years
encryption=True
)
Regulatory Documentation
FDA Validation Support
# Generate FDA-compliant documentation
async def generate_fda_documentation():
"""Generate documentation for FDA submission"""
fda_docs = {
"device_description": await generate_device_description(),
"clinical_protocol": await generate_clinical_protocol(),
"safety_analysis": await generate_safety_analysis(),
"efficacy_data": await generate_efficacy_data(),
"quality_system": await generate_quality_system_docs(),
"risk_analysis": await generate_risk_analysis()
}
# Compile comprehensive submission package
submission_package = await compile_fda_submission(fda_docs)
return submission_package
async def generate_clinical_protocol():
"""Generate clinical protocol documentation"""
protocol = {
"title": "Clinical Evaluation of NeuraScale BCI System",
"objectives": {
"primary": "Demonstrate safety and efficacy for intended use",
"secondary": ["User satisfaction", "System reliability", "Clinical workflow integration"]
},
"study_design": {
"type": "prospective_clinical_study",
"duration": "12_months",
"sample_size": 50,
"inclusion_criteria": [...],
"exclusion_criteria": [...]
},
"endpoints": {
"primary": "Classification accuracy > 70%",
"secondary": ["System uptime > 99%", "User satisfaction > 4/5"]
},
"statistical_plan": {
"power_analysis": "80% power to detect 10% difference",
"alpha_level": 0.05,
"analysis_method": "intention_to_treat"
}
}
return protocol
Clinical applications require proper medical oversight, institutional review board approval, and compliance with local regulations. This documentation provides technical guidance only and should not replace proper clinical protocols.
Integration with Hospital Systems
HL7 FHIR Integration
from neurascale.clinical.integration import HL7FHIRInterface
# Configure hospital system integration
hospital_integration = {
"ehr_system": "epic", # epic, cerner, allscripts
"fhir_server": "https://fhir.hospital.org/R4",
"authentication": {
"method": "oauth2",
"client_id": "neurascale_client",
"scopes": ["patient/read", "observation/write", "diagnosticreport/write"]
}
}
fhir_client = HL7FHIRInterface(hospital_integration)
async def sync_with_ehr():
"""Synchronize NeuraScale data with hospital EHR"""
# Get patient data from EHR
patient_fhir = await fhir_client.get_patient(patient.hospital_id)
# Create FHIR observation for EEG data
eeg_observation = {
"resourceType": "Observation",
"status": "final",
"category": [
{
"coding": [
{
"system": "http://terminology.hl7.org/CodeSystem/observation-category",
"code": "survey"
}
]
}
],
"code": {
"coding": [
{
"system": "http://loinc.org",
"code": "54649-5",
"display": "EEG study"
}
]
},
"subject": {"reference": f"Patient/{patient.hospital_id}"},
"effectiveDateTime": session.start_time.isoformat(),
"valueString": "Normal EEG with no epileptiform activity"
}
# Submit to EHR
await fhir_client.create_observation(eeg_observation)
This comprehensive clinical workflow documentation provides healthcare professionals with the necessary guidance to implement NeuraScale in clinical settings while maintaining compliance with healthcare regulations and standards.